Thermal Leptogenesis

Michael Plümacher

Max Planck Institute for Physics
Munich
Problem #1: the universe is made of matter.

Baryon asymmetry (from nucleosynthesis and CMB):

\[\eta_B \equiv \frac{n_b - n_{\bar{b}}}{n_\gamma} \sim 6 \times 10^{-10} \]

must have been generated during the evolution of the universe

Problem #2:

\(\nu \) masses are \(\neq 0 \) but orders of magnitude smaller than any other known masses

Both problems cannot be solved in the Standard Model

\(\Rightarrow \) need extended model
Introduction

Problem #1: the universe is made of matter.
Baryon asymmetry (from nucleosynthesis and CMB):

\[\eta_B \equiv \frac{n_b - n_{\bar{b}}}{n_\gamma} \sim 6 \times 10^{-10} \]

must have been generated during the evolution of the universe

Problem #2:
\(\nu \) masses are \(\neq 0 \) but orders of magnitude smaller than any other known masses

Both problems cannot be solved in the Standard Model
⇒ need extended model
Problem #1: the universe is made of matter.

Baryon asymmetry (from nucleosynthesis and CMB):

\[\eta_B \equiv \frac{n_b - n_{\bar{b}}}{n_\gamma} \sim 6 \times 10^{-10} \]

must have been generated during the evolution of the universe

Problem #2:

\(\nu \) masses are \(\neq 0 \) but orders of magnitude smaller than any other known masses

Both problems cannot be solved in the Standard Model

\(\Rightarrow \) need extended model
Standard Model:
- left- and right-handed quarks and charged leptons
- neutrinos only left-handed. Why?

Introduce right-handed neutrinos N

First prediction: neutrino masses (type I seesaw) $m_\nu \sim \nu^2 / M$

$\nu \sim 100\text{GeV}$: SM mass scale; M: mass of N.

Observed light neutrino masses yield clues on M

$$m_\nu \gtrsim 0.05\text{eV} \implies M \lesssim 10^{14}\text{GeV}$$

Second prediction: lepton number L is violated

B and L not independent at $T \gtrsim 100\text{GeV}$ (sphalerons)

$$\eta_B = c \eta_L \quad \text{with} \quad c \sim \frac{1}{3}$$

L violating processes can be used to generate η_B
Standard Model:
- left- and right-handed quarks and charged leptons
- neutrinos only left-handed. Why?

Introduce right-handed neutrinos N

First prediction: neutrino masses (type I seesaw) $m_\nu \sim \frac{v^2}{M}$
$v \sim 100\text{ GeV}$: SM mass scale; M: mass of N.
Observed light neutrino masses yield clues on M

$$m_\nu \gtrsim 0.05\text{ eV} \implies M \lesssim 10^{14}\text{ GeV}$$

Second prediction: lepton number L is violated

B and L not independent at $T \gtrsim 100\text{ GeV}$ (sphalerons)

$$\eta_B = c \eta_L \quad \text{with} \quad c \sim \frac{1}{3}$$
L violating processes can be used to generate η_B
Standard Model:

- left- and right-handed quarks and charged leptons
- neutrinos only left-handed. Why?

Introduce right-handed neutrinos N

First prediction: neutrino masses (type I seesaw) $m_\nu \sim v^2 / M$

$v \sim 100 \text{GeV}$: SM mass scale; M: mass of N.

Observed light neutrino masses yield clues on M

$$m_\nu \gtrsim 0.05 \text{eV} \Rightarrow M \lesssim 10^{14} \text{GeV}$$

Second prediction: lepton number L is violated

B and L not independent at $T \gtrsim 100 \text{GeV}$ (sphalerons)

$$\eta_B = c \eta_L \text{ with } c \sim \frac{1}{3}$$

L violating processes can be used to generate η_B
A free lunch: Leptogenesis in type I seesaw

Right-handed neutrinos can also give rise to η_B (Fukugita and Yanagida '86)

Yukawa couplings:

$$\mathcal{L}_Y \simeq \overline{N} \lambda_\nu l H - \overline{N} M N$$

- Ns are unstable, decay to lepton-Higgs pairs:

$$\Gamma_D \propto \tilde{m}_1 = \frac{v^2}{M_1} (\lambda_\nu^T \lambda_\nu)_{11}$$

- N interactions violate $L \to L \neq 0$, partially converted to $B \neq 0$ by sphalerons

- λ_ν complex \Rightarrow CP violation ε_i
Challenge #1: How do the N get produced?

(Luty '92; M.P. '96; Pilaftsis and Underwood '03)

N scattering processes are important all production processes $\propto \tilde{m}_1$

need large \tilde{m}_1 for efficient production

Challenge #2: L violating scatterings can destroy η_B

(Fukugita & Yanagida '90; Buchmüller, Di Bari & M.P. '02; Giudice et al. '03)

Two contributions to reaction rate:

- resonant contribution from N_1: $\propto \tilde{m}_1$
- remainder: $\propto M_1 \overline{m}^2$, $\overline{m}^2 = \sum m_{\nu_i}^2$

need small \tilde{m}_1 and $M_1 \overline{m}^2$ to avoid washout

Two conflicting requirements

\rightarrow network of Boltzmann equations
Challenge #1: How do the N get produced?

(Luty '92; M.P. '96; Pilaftsis and Underwood '03)

N scattering processes are important

all production processes $\propto \tilde{m}_1$

need large \tilde{m}_1 for efficient production

Challenge #2: L violating scatterings can destroy η_B

(Fukugita & Yanagida '90; Buchmüller, Di Bari & M.P. '02; Giudice et al. '03)

Two contributions to reaction rate:

- resonant contribution from N_1: $\propto \tilde{m}_1$
- remainder: $\propto M_1 \overline{m}^2$, $\overline{m}^2 = \sum m_{\nu_i}^2$

need small \tilde{m}_1 and $M_1 \overline{m}^2$ to avoid washout

Two conflicting requirements

→ network of Boltzmann equations
Challenge #1: How do the N get produced?

(N scattering processes are important all production processes $\propto \tilde{m}_1$ need large \tilde{m}_1 for efficient production)

Challenge #2: L violating scatterings can destroy η_B

(Two contributions to reaction rate:

- resonant contribution from $N_1: \propto \tilde{m}_1$
- remainder: $\propto M_1\bar{m}^2$, $\bar{m}^2 = \sum m_{\nu_i}^2$

need small \tilde{m}_1 and $M_1\bar{m}^2$ to avoid washout)

Two conflicting requirements

\longrightarrow network of Boltzmann equations
Baryon asymmetry determined by four parameters

1. \(CP \) asymmetry \(\varepsilon_1 \)
2. Mass of decaying neutrino \(M_1 \)
3. Effective light neutrino mass \(\tilde{m}_1 \) \((\propto\) decay width of \(N_1 \))
4. Light neutrino masses \(\bar{m} = \sqrt{m_{\nu_1}^2 + m_{\nu_2}^2 + m_{\nu_3}^2} \)

Final baryon asymmetry

\[\eta_B \simeq 10^{-2} \varepsilon_1 \kappa(\tilde{m}_1, M_1\bar{m}^2) \]

need to know:

- \(CP \) asymmetry \(\varepsilon_1 \) (from neutrino mass model)
- Efficiency factor \(\kappa \) parametrizes \(N \) interactions
 (from integration of Boltzmann eqs.)

(Barbieri et al. ’00; Buchmüller, Di Bari & M.P. ’02)
Baryon asymmetry determined by four parameters

1. CP asymmetry \(\varepsilon_1 \)
2. Mass of decaying neutrino \(M_1 \)
3. Effective light neutrino mass \(\tilde{m}_1 \) (\(\propto \) decay width of \(N_1 \))
4. Light neutrino masses \(\bar{m} = \sqrt{m^2_{\nu_1} + m^2_{\nu_2} + m^2_{\nu_3}} \)

Final baryon asymmetry

\[
\eta_B \simeq 10^{-2} \varepsilon_1 \kappa(\tilde{m}_1, M_1 \bar{m}^2)
\]

need to know:

- CP asymmetry \(\varepsilon_1 \) (from neutrino mass model)
- Efficiency factor \(\kappa \) parametrizes interactions
 (from integration of Boltzmann eqs.)

(Barbieri et al. '00; Buchmüller, Di Bari & M.P. '02)
Leptogenesis

CP asymmetry

\[\varepsilon_1 = \frac{\Gamma(N \to l) - \Gamma(N \to \bar{l})}{\Gamma(N \to l) + \Gamma(N \to \bar{l})} \]

for \(M_{2,3} \gg M_1 \): upper bound on \(\varepsilon_1 \) in terms of light \(\nu \) masses:

(Davidson & Ibarra '02; Buchmüller, Di Bari & M.P. '03; Hambye et al. '03)

\[\varepsilon_1^{\text{max}} = \frac{3}{16\pi} \frac{M_1 m_{\nu_3}}{v^2} f(m_{\nu_i}, \tilde{m}_1) \]

two limiting cases:

- hierarchical light vs: \(m_{\nu_1} \to 0 \) \(\Rightarrow \) \(\varepsilon_1^{\text{max}} = \frac{3}{16\pi} \frac{M_1 m_{\nu_3}}{v^2} \)

- degenerate light vs: \(m_{\nu_3} = m_{\nu_1} \) \(\Rightarrow \) \(\varepsilon_1^{\text{max}} = 0 \)

\(\rightarrow \) CP asymm. suppressed if light \(\nu \) spectrum quasi-degenerate
CP asymmetry

\[\varepsilon_1 = \frac{\Gamma(N \rightarrow l) - \Gamma(N \rightarrow \bar{l})}{\Gamma(N \rightarrow l) + \Gamma(N \rightarrow \bar{l})} \]

for \(M_{2,3} \gg M_1 \): upper bound on \(\varepsilon_1 \) in terms of light \(\nu \) masses:

(Davidson & Ibarra '02; Buchmüller, Di Bari & M.P. '03; Hambye et al. '03)

\[\varepsilon_{1\text{max}} = \frac{3}{16\pi} \frac{M_1 m_{\nu_3}}{v^2} f(m_{\nu_i}, \tilde{m}_1) \]

two limiting cases:

- **hierarchical light vs:** \(m_{\nu_1} \rightarrow 0 \) \(\Rightarrow \) \(\varepsilon_{1\text{max}} = \frac{3}{16\pi} \frac{M_1 m_{\nu_3}}{v^2} \)

- **degenerate light vs:** \(m_{\nu_3} = m_{\nu_1} \) \(\Rightarrow \) \(\varepsilon_{1\text{max}} = 0 \)

\(\rightarrow \) CP asymm. suppressed if light \(\nu \) spectrum quasi-degenerate
CP asymmetry

\[\varepsilon_1 = \frac{\Gamma(N \to l) - \Gamma(N \to \bar{l})}{\Gamma(N \to l) + \Gamma(N \to \bar{l})} \]

for \(M_{2,3} \gg M_1 \): upper bound on \(\varepsilon_1 \) in terms of light \(\nu \) masses:

(Davidson & Ibarra '02; Buchmüller, Di Bari & M.P. '03; Hambye et al. '03)

\[\varepsilon_{1}^{\text{max}} = \frac{3}{16\pi} \frac{M_1 m_{\nu_3}}{\nu^2} f(m_{\nu_i}, \tilde{m}_1) \]

two limiting cases:

- hierarchical light vs: \(m_{\nu_1} \to 0 \) \(\Rightarrow \) \(\varepsilon_{1}^{\text{max}} = \frac{3}{16\pi} \frac{M_1 m_{\nu_3}}{\nu^2} \)

- degenerate light vs: \(m_{\nu_3} = m_{\nu_1} \) \(\Rightarrow \) \(\varepsilon_{1}^{\text{max}} = 0 \)

\(\rightarrow \) CP asymm. suppressed if light \(\nu \) spectrum quasi-degenerate
Constraints on neutrino parameters

1. N_1 production processes $\propto \tilde{m}_1 \Rightarrow$ lower limit on \tilde{m}_1

2. Washout processes:
 - res. contrib. from $N_1 \propto \tilde{m}_1 \Rightarrow$ upper limit on \tilde{m}_1
 - remainder $\propto M_1 \overline{m}^2 \Rightarrow$ upper limit on M_1 for fixed \overline{m}

3. maximal CP asymmetry $\propto M_1 \Rightarrow$ lower limit on M_1
 since $\eta_B \propto \varepsilon_1$

for fixed $\overline{m} \Rightarrow$ allowed region in (\tilde{m}_1, M_1) plane

Size of allowed region depends on \overline{m} since:

- max. CP asymm. suppressed for quasi-degenerate light vs
- $\tilde{m}_1 \geq m_{\nu_1}$

\Rightarrow upper bound on \overline{m}
Constraints on neutrino parameters

(Buchmüller, Di Bari & M.P. '03, '04)

light ν masses: \(\bar{m} < 0.22 \text{ eV} \quad \Rightarrow \quad m_{\nu_i} < 0.13 \text{ eV} \)

RHN masses: \(T_B \sim M_1 \gtrsim 10^9 \text{ GeV} \)
Resonant Leptogenesis

Resonant enhancement of CP-asymmetry for $M_{2,3} - M_1 \ll M_1$:

Almost no effect on bound on light ν masses, but lower limit on T_B, M_1 can be evaded.

However: many different results in literature !?

Problem: N_i unstable, i.e. cannot appear as in- or out-states of S-matrix elements

Solution: scattering amplitudes of stable particles with N_i as intermediate states

Factorisation: effective one-loop couplings of N_i
Resonant Leptogenesis

Resonant enhancement of CP-asymmetry for $M_{2,3} - M_1 \ll M_1$:

\[N_1 \rightarrow^H_l \rightarrow N_1 \rightarrow^H_l \rightarrow N_1 \rightarrow^H_l \rightarrow N_1 \rightarrow^H_l \rightarrow \]

Almost no effect on bound on light ν masses, but lower limit on T_B, M_1 can be evaded.

However: many different results in literature !?

Problem: N_i unstable, i.e. cannot appear as in- or out-states of S-matrix elements

Solution: scattering amplitudes of stable particles with N_i as intermediate states

Factorisation: effective one-loop couplings of N_i
Resummation of self-energies

regularizes resonant propagator \(\Rightarrow \) mixing effects

\[
(S^{-1})_{ij} = \not p - M_i - \Sigma_{ij}
\]

Renormalization known (Kniehl & Pilaftsis '96)

Chiral decomposition of propagator:

\[
S = P_R S^{RR} + P_L S^{LL} + P_L \not p S^{LR} + P_R \not p S^{RL}
\]

Contribute to different scattering processes:

\[
\mathcal{M} (l_r \rightarrow \bar{l}_s) \propto h_{ri} S^{LL}_{ij} h_{sj} \\
\mathcal{M} (\bar{l}_r \rightarrow l_s) \propto h_{ri}^* S^{RR}_{ij} h_{sj} \\
\mathcal{M} (l_r \rightarrow l_s) \propto h_{ri}^* S^{RL}_{ij} h_{sj} \\
\mathcal{M} (\bar{l}_r \rightarrow \bar{l}_s) \propto h_{ri} S^{LR}_{ij} h_{sj}
\]

Contributions of different \(N_i \) mass eigenstates?
Factorization (Anisimov, Broncano & M.P. ’05):

Different methods:

1. Decompose scattering ampl. into partial fractions, e.g.:

\[
M(\ell_r \rightarrow \bar{\ell}_s) \propto \lambda_{r1} \frac{1}{p^2 - \hat{M}_1^2} \lambda_{s1} + \lambda_{r2} \frac{1}{p^2 - \hat{M}_2^2} \lambda_{s2} + \ldots
\]

\(\lambda_{ri}\): resummed effective \(N_i\) Yukawa coupling

Consistency: all 4 amplitudes can be factorized simultaneously.

2. Diagonalization of propagators, e.g.:

\[
U S^{LL} U^T = S^{\text{diag}}
\]

\[
M(\ell_r \rightarrow \bar{\ell}_s) \propto (hU^T)_{ri} S^{\text{diag}}_{ii} (hU^T)_{si}
\]

\((hU^T)_{ri}\): resummed effective \(N_i\) Yukawa coupling

Consistency: for \(p^2 = M_i^2\) all 4 amplitudes can be factorized simultaneously.
Results:

Both methods yield identical results for physical quantities:

1. **Decay widths:** $\Gamma(N_i \rightarrow \bar{l}_r) \propto |\lambda_{ri}|^2 = \left|(hU^T)_{ri}\right|^2$, for $p^2 = M_i^2$

2. **CP-asymmetries**, e.g.:

$$\varepsilon_1 \propto \frac{M_2^2 - M_1^2}{\left(M_2^2 - M_1^2\right)^2 + \left(M_2 \Gamma_2 - M_1 \Gamma_1\right)^2},$$

Previous approaches, e.g., resum only self-energy Σ_{jj} of intermediate neutrino $N_j \Rightarrow$ regulator: Γ_j (Pilaftsis & Underwood '04)

$$\varepsilon_1 \propto \frac{M_2^2 - M_1^2}{\left(M_2^2 - M_1^2\right)^2 + M_1^2 \Gamma_2^2}$$

Different neutrino flavours are treated differently!
Results:

Both methods yield identical results for physical quantities:

1. **Decay widths**: \(\Gamma(N_i \rightarrow \tilde{l}_r) \propto |\lambda_{ri}|^2 = |(hU^T)_{ri}|^2 \), for \(p^2 = M_i^2 \)

2. **CP-asymmetries**, e.g.:

\[
\varepsilon_1 \propto \frac{M_2^2 - M_1^2}{(M_2^2 - M_1^2)^2 + (M_2 \Gamma_2 - M_1 \Gamma_1)^2},
\]

Previous approaches, e.g., resum only self-energy \(\Sigma_{jj} \) of intermediate neutrino \(N_j \Rightarrow \) regulator: \(\Gamma_j \) (Pilaftsis & Underwood '04)

\[
\varepsilon_1 \propto \frac{M_2^2 - M_1^2}{(M_2^2 - M_1^2)^2 + M_1^2 \Gamma_2^2}
\]

Different neutrino flavours are treated differently!
Relative one-loop correction to couplings of N_1

Our result (thick line) compared to the one of Pilaftsis et al.:

thin line has resonance at $p^2 = M_2^2$, i.e. contributions from different neutrino mass eigenstates not properly separated in previous approaches.
CP asymmetry

Our result (thick line) compared to the one of Pilaftsis et al.:

Both the position of the resonance and the maximum value for ε_1 have shifted by an order of magnitude (details depend on neutrino mass model used).
Conclusions

- Type I seesaw naturally explains the cosmological baryon asymmetry and the smallness of neutrino masses
- Quasi-degenerate light ν masses are incompatible with leptogenesis:
 \[m_{\nu_i} < 0.13 \text{ eV} \]

- Lower bound on the baryogenesis temperature:
 \[T_B \gtrsim 10^9 \text{ GeV} \text{,} \quad t_B \sim 10^{-25} \text{ s} \]

 - possible way out: resonant leptogenesis
 - leptogenesis works best in neutrino mass window
 \[10^{-3} \text{ eV} \lesssim m_{\nu_i} \lesssim 0.1 \text{ eV} \]

 consistent with neutrino oscillations
Conclusions

COSMOLOGY MARCHES ON

Where did it all come from?

Where did it all come from?