Resonant Modes in Brane-World Inflation

Andy Mennim

work with Kazuya Koyama and David Wands

Institute of Cosmology and Gravitation, University of Portsmouth

New Views of the Universe
Chicago, 12 December 2005
Resonant Modes in Brane-World Inflation

Andy Mennim

Introduction

A toy model with a scalar field

de Sitter Brane-World

Conclusions

Contents

1 Introduction

2 A toy model with a scalar field

3 de Sitter Brane-World

4 Conclusions
Motivation

- There has been considerable interest in brane-world models recently, where ordinary matter is confined to a subspace of a higher-dimensional spacetime, I will focus on the Randall–Sundrum model with a single brane.
- Minkowski and cosmological background solutions are known but cosmological perturbations are difficult.
- Understanding perturbations at high energies (inflation) is particularly important because the effects are potentially strong and testable in CMBR measurements.
- In this regard it is important to determine the quantum vacuum state for brane inflation, which has not yet been calculated. (David Wands’s talk on Saturday)
Resonant Modes in Brane-World Inflation

Andy Mennim

Introduction

A toy model with a scalar field
de Sitter Brane-World

Conclusions

Outline

• We sought first to investigate these using a toy model with coupled scalar fields in place of gravity and matter. [hep-th/0504201]
• These coupled boundary-bulk systems have a rich structure of behaviour.
• We then investigated cosmological scalar perturbations in the Randall–Sundrum model, focussing on sub-horizon perturbations for an inflating brane.
• We find modes associated with brane-world inflation that obey a modified dispersion relation.
Toy Model with Scalar Field

We consider a model with a fixed background and a bulk scalar field coupled to a brane scalar field. The action is:

\[
S = \frac{1}{2} \int_V d^{d+1}x \sqrt{-G} \left(G^{MN} \phi_{,M} \phi_{,N} + m^2 \phi^2 \right) \\
- \frac{1}{2} \int_{\partial V} d^d x \sqrt{-g} \left[g^{\mu \nu} q_{,\mu} q_{,\nu} + \mu^2 q^2 + 2\beta \phi q \right].
\]

\(G_{MN} \) is the bulk metric.
\(g_{\mu \nu} \) is the brane metric.
\(\phi \) is the bulk scalar field with mass \(m \).
\(q \) is the brane scalar field with mass \(\mu \).
\(\beta \) is the coupling between the fields.
Equations of Motion

The coupled wave equations are then

\[(d) \Box q = \mu^2 q + \beta \phi \big|_{\text{brane}},\]

on the brane, and a free wave equation for \(\phi\) in the bulk

\[(d+1) \Box \phi = m^2 \phi,\]

subject to the boundary condition

\[\phi' \big|_{\text{brane}} = \frac{\beta}{2} q. \]
Solutions for a Minkowski Bulk

[A. George — hep-th/0412067]

First consider a flat brane located at $y = 0$ in a flat bulk

$$ds^2 = -dt^2 + \delta^{ij} dx_i dx_j + dy^2,$$

The equations of motion are

$$\ddot{q} + k^2 q = -\mu^2 q - \beta \phi|_{\text{brane}},$$
$$\ddot{\phi} + k^2 \phi = \phi'' - m^2 \phi,$$

Solve the bulk equation by separating variables

$$\ddot{T}_\rho + \omega^2 T = 0 \quad \text{where} \quad \omega^2 = \rho^2 + m^2 + k^2,$$
$$q(t) = \int_0^\infty d\rho \, C_\rho \, T_\rho(t),$$
$$\phi(t, z) = \int_0^\infty d\rho \, [A_\rho \cos(\rho y) + B_\rho \sin(\rho y)] \, T_\rho(t).$$
The boundary field equation and junction condition relate the coefficients

\[2\rho (\rho^2 + m^2 - \mu^2) B_\rho = \beta (\rho^2 + m^2 - \mu^2) C_\rho = \beta^2 A_\rho. \]

Bound States:
We impose the condition \(\Im(\rho) > 0 \) and

\[A_\rho = -iB_\rho. \]

So that \(\phi(y) \to e^{i\rho y} \), which is exponentially decaying.

Combined with the condition above, this yields

\[2\rho (\rho^2 + m^2 - \mu^2) + i\beta^2 = 0. \]

This will describe stable oscillations if \(\omega^2 > 0 \), which requires

\[\beta^2 < 2m\mu^2. \]
• For massive oscillators we get a single bound state provided that the masses and coupling obey $\beta^2 < 2m\mu^2$.

• Compare to non-brane-world case of two coupled oscillators where we can diagonalize the mass matrix.

• The stable bound state allows us to define a vacuum state.
Solutions for an AdS Bulk

[Koyama, Mennim & Wands — hep-th/0504201]

The Randall–Sundrum model: a flat brane \((z = \ell)\) in an AdS bulk

\[
ds^2 = \frac{\ell^2}{z^2} \left(-dt^2 + \delta_{ij} dx_i dx_j + dz^2 \right),
\]

The equations of motion are

\[
\ddot{q} + k^2 q = -\mu^2 q - \beta \phi \big|_{\text{brane}},
\]

\[
\ddot{\phi} + k^2 \phi = \phi'' - \frac{3}{z} \phi' - \frac{m^2 \ell^2}{z^2} \phi,
\]

Separating variables allows us to write the solution as

\[
q(t) = \int_0^\infty d\rho \, C_\rho e^{\pm i \omega t},
\]

\[
\phi(t, z) = \int_0^\infty d\rho \, z^2 [A_\rho J_\nu(\rho z) + B_\rho Y_\nu(\rho z)] e^{\pm i \omega t}.
\]

where \(\omega^2 = \rho^2 + k^2\) and \(\nu = \sqrt{4 + m^2 \ell^2}\).
Bound State Solutions

Consider the simple case where \(m = \mu = 0 \), and use units where \(\ell = 1 \). Bound states satisfy

\[
\rho^3 H_1^{(1)}(\rho) - \frac{\beta^2}{2} H_2^{(1)}(\rho) = 0,
\]

- When \(\beta = 0 \) there is a zero-mode solution \(\rho = 0 \).
- When \(\beta \neq 0 \) this is no longer a solution; for small \(\beta \), it becomes 4 roots, two of which satisfy \(\Im \rho > 0 \):

\[
\rho_1 \approx -\sqrt{\beta} + i \frac{\pi}{16} \beta^{3/2}, \\
\rho_2 \approx i \sqrt{\beta} + \text{no real part},
\]
Recall that \(\omega = \pm \sqrt{\rho^2 + k^2} \).

- The imaginary root \(\rho \approx i\sqrt{\beta} \) is a bound state, but leads to tachyonic instability on long wavelengths.
- The other root \(\rho \approx -\sqrt{\beta} + i\pi\beta^{3/2}/16 \) is a quasi-normal mode describing a metastable state.
- For massive fields we can calculate a critical coupling, as before, below which there is a bound state.
The background line element has the form

$$ds^2 = N(z)^2 \left[-dt^2 + dz^2 + e^{2Ht}d\vec{x}^2 \right],$$

where H is the Hubble parameter (constant in a de Sitter universe), ℓ is the AdS curvature length-scale,

$$N(z) = \frac{H\ell}{\sinh(Hz)},$$

and the brane is located at

$$z_b = H^{-1} \arcsinh(H\ell).$$
Perturbations

Cosmological perturbations are most easily expressed in terms of Mukohyama’s master variable, Ω_M.

$$ds^2 = N(z)^2 \left[- (1 + 2A) dt^2 + (1 + 2A_{zz}) dz^2 + 2A_z dtdz + a^2 (1 + 2R) d\vec{x}^2 \right].$$

with

$$A = - \frac{1}{6aN^3} \left(2\Omega''_M - 3 \frac{N'}{N} \Omega_M + \ddot{\Omega}_M - \frac{N^2}{\ell^2} \Omega_M \right),$$

etc.
We perform a rescaling,

\[\Omega_{\text{M}} = a^3 N^3 \Omega , \]

which obeys a canonical wave equation with a negative effective square-mass.

\[
\frac{\partial^2 \Omega}{\partial t^2} + 3H \frac{\partial \Omega}{\partial t} + k^2 e^{-2Ht} \Omega = \\
\frac{\partial^2 \Omega}{\partial z^2} - 3H \frac{\cosh(Hz)}{\sinh(Hz)} \frac{\partial \Omega}{\partial z} + \frac{4H^2}{\sinh^2(Hz)} \Omega .
\]

We can solve this by separating variables, writing

\[\Omega(t, z) = \int d\nu \ T_\nu(t) Z_\nu(z) . \]
Resonant Modes in Brane-World Inflation

Andy Mennim

Introduction

A toy model with a scalar field

de Sitter Brane-World

Conclusions

\[\ddot{T} + 3H \dot{T} + \left[\left(\frac{9}{4} - \nu^2 \right) H^2 + k^2 e^{-2Ht} \right] T = 0, \]

\[Z'' - 3H \frac{\cosh(Hz)}{\sinh(Hz)} Z' + \left[\left(\frac{9}{4} - \nu^2 \right) H^2 + \frac{4H^2}{\sinh^2(Hz)} \right] Z = 0, \]

the solutions to which are

\[T_\nu(t) = e^{-3Ht/2} \left\{ A_\nu \ J_\nu \left(\frac{k}{H} e^{-Ht} \right) + B_\nu \ Y_\nu \left(\frac{k}{H} e^{-Ht} \right) \right\}, \]

\[Z_\nu(z) = \sinh^2(Hz) \left\{ a_\nu \ P_{\nu - 1/2} \left(\cosh(Hz) \right) \right. \]

\[+ b_\nu \ Q_{\nu - 1/2} \left(\cosh(Hz) \right) \right\}, \]

where \(J \) and \(Y \) are Bessel functions and \(P \) and \(Q \) are associated Legendre functions.
Perturbations on the boundary

The boundary field is the perturbation of the inflaton ϕ, written as $\delta \phi$. However, it is more convenient to define the, gauge-invariant, Muhkanov-Sasaki variable Q, given by

$$Q = \delta \phi - \frac{\dot{\phi}}{H} \psi$$

where ψ is the Newtonian potential. The equation of motion for Q is

$$\ddot{Q} + 3H \dot{Q} + \left[k^2 e^{-2Ht} + (\eta - 6\varepsilon)H^2 \right] Q =$$

$$\dot{\phi} k^2 \left\{ \ddot{\Omega} + 5H \dot{\Omega} + \left[k^2 e^{-2Ht} + (6 - 3\varepsilon)H^2 \right] \Omega \right\}$$

where

$$\varepsilon = -\frac{\dot{H}}{H^2} \quad \text{and} \quad \eta = \frac{V''}{H^2}$$
We seek a solution by writing Q in terms of the functions T_ν as

$$Q = \int d\nu \, C_\nu \, T_\nu(t),$$

Substituting this and the expression for Ω into the boundary equation of motion gives

$$\int d\nu \left[\nu^2 - \frac{9}{4} - 6\varepsilon + \eta \right] H^2 C_\nu T_\nu =$$

$$- \frac{\beta k^2}{\kappa \sqrt{6H}} \int d\nu \left\{ 2H \dot{T}_\nu + \left[\nu^2 - \frac{15}{4} - 3\varepsilon \right] H^2 T_\nu \right\} Z_\nu \bigg|_{\text{brane}}$$

where

$$\beta^2 = \frac{\kappa^2 \phi^2}{6H} \approx \frac{\varepsilon}{3}$$
Large k limit

Changing to conformal time,

$$\int d\nu \left[\nu^2 - \frac{9}{4} - 6\varepsilon + \eta \right] H^2 C_\nu T_\nu =$$

$$\frac{\beta k^2}{\kappa \sqrt{6H}} \int d\nu \left\{ \frac{2H}{a} \frac{dT_\nu}{d\tau} - \left[\nu^2 - \frac{15}{4} - 3\varepsilon \right] H^2 T_\nu \right\} Z_\nu \bigg|_{\text{brane}}$$

In the small-wavelength limit we can treat a as approximately constant. Then we can write T_ν as

$$T_\nu(\tau) = e^{i\omega_\nu \tau}$$

where ω_ν must satisfy

$$\omega_\nu^2 - 2Hai\omega_\nu + \left(\nu^2 - \frac{9}{4} \right) H^2 a^2 - k^2 = 0$$
We are interested in the primordial universe where $H\ell \ll 1$, so we use the asymptotic expansion

\[\frac{Q_{\nu + \frac{1}{2}}}{Q_{\nu - \frac{1}{2}}} \left(\frac{\sqrt{1 + H^2 \ell^2}}{\sqrt{1 + H^2 \ell^2}} \right) \sim \frac{2\nu + 1}{4(\nu + 1)} \frac{1}{H\ell} \]

This gives the condition as

\[\frac{\beta^2 k^2}{a^2 H^2} \left(\frac{2i\omega}{aH} - \nu^2 \right) \approx - \left(\frac{i\omega}{aH} + 3 \right) \left(\nu^2 - \frac{9}{4} \right) \left(\nu + \frac{1}{2} \right) \]
Defining $\bar{k} = k/aH$ and $\bar{\omega} = \omega/aH$, we have the following coupled system of equations

$$\bar{\omega}^2 - 2i\bar{\omega} + \nu^2 - \frac{9}{4} - \bar{k}^2 = 0,$$

$$2i\beta^2 \bar{k}^2 \bar{\omega} - \beta^2 \bar{k}^2 \nu^2 = -(i\bar{\omega} + 3)\nu^3 - (i\bar{\omega} + 3)\frac{\nu^2}{2}.$$

We can find the roots approximately by expanding in orders of k. Four of the roots are

$$\nu = \pm (1 + i)\sqrt{\bar{k}} \pm \frac{i}{\beta^2 \sqrt{\bar{k}}} - \frac{\bar{\omega}^2}{\beta^2 \bar{k}^2},$$

$$\bar{\omega} = \bar{k} + \frac{1 + i}{\beta^2 \sqrt{k}} \quad \text{or} \quad - \bar{k} + \frac{1 - i}{\beta^2 \sqrt{k}},$$
Of these, two are normalizable.

\[\nu \approx (1 + i)\sqrt{k} + \frac{i}{\beta^2\sqrt{k}} - \frac{\bar{\omega}^2}{\beta^2 \bar{k}^2}, \]

\[\bar{\omega} \approx \bar{k} + \frac{1 + i}{\beta^2\sqrt{k}} \quad \text{or} \quad - \bar{k} + \frac{1 - i}{\beta^2\sqrt{k}}, \]

Two more roots are:

\[\nu \approx \mp i\beta^2\bar{k} + \frac{2}{\beta^2} - \frac{i}{2} \]

\[\bar{\omega} \approx \pm \bar{k}\sqrt{1 + \beta^4} \]

These are both normalisable.

And a final two:

\[\nu \approx \mp i\bar{k} + \frac{3}{\beta^2} - \frac{i}{2} \]

\[\bar{\omega} \approx \pm i\beta^2\bar{k} - \frac{\beta^2}{2} \]

These are normalizable, but are rapidly growing and decaying.
We interpret the following modes as being of physical interest:

\[\nu \approx \pm (1 + i)\sqrt{\bar{k}} \pm \frac{i}{\beta^2 \sqrt{\bar{k}}} , \]
\[\bar{\omega} \approx \pm \bar{k} \]

corresponding to a free bulk mode uncoupled to a perturbation of the Mukhanov–Sasaki variable \(Q \).

\[\nu \approx \mp i \beta^2 \bar{k} + \frac{2}{\beta^2} - \frac{i}{2} \]
\[\bar{\omega} \approx \pm \bar{k} \sqrt{1 + \beta^4} \]

which is a perturbation of the brane and bulk fields. Have a modified dispersion relation, although \(\mathcal{O}(\varepsilon^2) \). Compared with Transplankian modifications these are at a lower energy scale, and do not have to be added by hand.
Conclusions

• Coupled boundary bulk systems have a rich structure of behaviour

• Our toy models show bound states when the fields are massive and the coupling is less than a critical value.

• For scalar fields in a Randall–Sundrum background we can find quasi-normal modes.

• For metric perturbations in brane-world inflation we have determined bound states in the small-wavelength limit.

• There is a possibility of getting modified dispersion relations.

• Future work is to construct the quantum vacuum state for inflation and look for QNMs.