December 8th – 13th, 2005, Chicago

From the Knee to the toes: The challenge of cosmic-ray composition

Jörg R. Hörandel University of Karlsruhe

Primary Energy E0 [GeV]

www-ik.fzk.de/~joerg

From the Knee to the toes: The challenge of cosmic-ray composition

University of Karlsruhe

www-ik.fzk.de/~joerg

From the Knee to the toes: The challenge of cosmic-ray composition

28. L. Norcheim

51. M. M. Shapiro

17. B. Rossi

8. J. Clay

TRACER Experiment - Mc Murdo, Antarctica LDB flight: December 12th – 26th, 2003 ~ 40 km (3-5 g/cm²)

Z = 8 - 26 E = 1 GeV/n - ~10 TeV/n

TRACER energy spectra for individual elements

D. Müller et al., Proc. 29th ICRC, Pune (2005)

acceleration of CR in supernova remnants

piopagation through galaxy

= 3 μ**G**

Interactions

extensive air showers

KASCADE: Test of interaction models

QGSJET 01

 N_e - N_μ analysis

proton

10

J. Milke et al., 29th ICRC, Pune (2005)

extensive air showers

acceleration of OP in

supernova remnant

piopagation through galaxy

= 3 μ**G**

B

Acceleration of particles in supernova remnant

SN R RX J1713.7-3946 H.E.S.S.: TeV-Gamma rays ASCA: X-rays (keV)

F.A. Aharonian, Nature 432 (2004) 75

KASCADE: Small scale anisotropy – point source search

acceleration of CR in supernova remnants

Propagation

opagation through galaxy

extensive air showers

Ratio of secondary to primary nuclei

Leaky box model

$$\lambda_{\rm esc} = \frac{26.7\,\beta g/cm^2}{(\beta R/1.0\,GV)^{0.58} + (\beta R/1.4\,GV)^{-1.4}}$$

N. E. Yanasak, ApJ 563 (2001) 768

N. E. Yanasak, ApJ 563 (2001) 768

S.P. Swordy, 24th ICRC, Rome 2 (1995) 697

Anisotropy amplitude vs energy

acceleration of CR in supernova remnants

Energy spectra & & Mass composition

nopagation through galaxy

= 3 μ**G**

extensive air showers

SPASE-2 / AMANDA-B10 (South Pole)

p-air cross section

p-p cross section

p-air cross section

Average depth of shower maximum

Mean logarithmic mass

Primary proton spectrum reconstructed from unaccompanied hadrons

T. Antoni et al, ApJ 612 (2004) 914

M. Aglietta et al., Astrop. Phys. 19 (2003) 329

Two dimensional shower size spectrum $\lg N_e$ vs. $\lg N_{\mu}$ samuel shower size spectrum $\lg N_e$ vs. $\lg N_{\mu}$ 10° 10°

 10^{2} Hydrogen 6 Helium Carbon 10 E 5.5 Silicon Iron 5 6.5 4.5 5 5.5 6 4 $lg N_{u}^{tr.}$ derive E_0 and A from N_e and N_u data Fredholm integral equations of 1st kind: $g_i(\lg N_e, \lg N_\mu) = \int_0^\infty t_i(\lg N_e, \lg N_\mu | E) p_i(E) dE$

M Roth et al, 28th ICRC, Tsukuba 1 (2003) 139

KASCADE: Energy spectra for elemental groups

Astrophysical interpretation limited by description of interactions in the atmosphere

KASCADE GRANDE Array

37 detector stations

370 m² e/ γ : Scintillation counter

700 m

G. Navarra et al., Nucl Instr & Meth A 518 (2004) 207

00 m

SIEBALI Material

ASCADE

) m x 200 m

KASCADE-Grande – N_e - N_μ correlation

Radio emission from air showers - LOPES

Coherent emission of synchroton radiation in geomagnetic field

LOPES

30 antennas operating at KASCADE-Grande

-5

LOPES first signals

Position of shower in sky

Nature 435 (2005) 313

Radio signal – dependence on

angle with respect to geomagnetic field

number of muons (i.e. primary energy)

Nature 435 (2005) 313

Hadrons at high altitude \rightarrow surviving protons

calorimeter @ 500 g/cm² 1 PeV: ~ 6.5 λ_i

320 m² sr

0.5 m² sr effective

ideal: combination with air Cerenkov detector for calibration

December 8th – 13th, 2005, Chicago

From the Knee to the toes: The challenge of cosmic-ray composition

Status:

Description of interactions in atmosphere improved
Mean mass increases as function of energy (knee region)
Knee is caused by subsequential cut-offs for individual elements
Astrophysical interpretation of EAS measurements limited by understanding of interactions in the atmosphere

Perspectives:

Thanks to my colleagues ...

TRACER Experiment

KASCADE-Grande Collaboration

Experimentelle Teilchenphysik, University of Siegen M. Brüggemann, P. Buchholz, C. Grupen, Y. Kolotaev, W. Walkoviak, D. Zimmermann

Institut für Kernphysik Forschungszentrum and University of Karlsruhe

T. Antoni, W.D. Apel, F. Badea, K. Bekk, A. Bercuci, H. Blümer, H. Bozdog, C. Büttner, K. Daumiller, P. Doll, R. Engel, J. Engler, F. Feßler, H.J. Gils, A. Haungs, D. Heck, J.R. Hörandel, H.O. Klages, G. Maier, H.-J. Mathes, H.J. Mayer, J. Milke, M. Müller, R. Obenland, J. Oehlschläger, S. Östapchenko, S. Plewnia, H. Rebel, M. Roth, G. Schatz, H. Schieler, J. Scholz, M. Stümpert, T. Thouw, H. Ulrich, J. van Buren, A. Weindel, J. Wochele, S. Zagromski

A. Pomero J.R. Hörandel Boyle G. Kelderhouse N. Averacer.

Fachbereich Physik, University of Wuppertal K.-H. Becker, R. Glasstetter, S. Hartmann, K.-H. Kampert

IFSI, CNR and University of Turino M. Bertania, A. Chiavassa, F. di Pierro, P.L. Ghia, C. Morello, G. Navarra, G.C. Trinchero, S. Valchierotti

tracer.uchicago.edu

Soltan Institute for Nuclear Studies, Lodz A. Risse, J. Zabierowski

Institute of Physics and Nuclear Ingineering, Bucharest I.M. Brancus, M. Petcu, O. Sima, G. Toma

WWW-IK.FZK.DE/KASCADE home.html

