Probing Dark Energy

From Theory to Observation

Josh Frieman

KICP Inaugural Symposium
Dec. 11, 2005
David Schramm’s Legacy
Supernova Hubble Diagram

CFHT Supernova Legacy Survey

Astier etal 05

Previous talk by Isobel Hook
Constraints
on Dark Energy
Equation of State

CFHT SNLS+
SDSS BAO

Astier et al 05

Dec. 11, 2005
Probing Dark Energy: the Present

• Probe dark energy through the history of the expansion rate:

\[ H^2(z) = H^2_0 \left[ \Omega_M (1+z)^3 + (1-\Omega_M)(1+z)^{3(1+w)} \right] \]

2-parameter model

Geometric tests:

• Comoving distance \( r(z) = F[\int dz/H(z)] \)
• Standard Candles Supernovae \( d_L(z) = (1+z) r(z) \)
• Standard Rulers Baryon Oscillations \( d_A(z) = (1+z)^{-1} r(z) \)
• Standard Population Clusters \( \frac{dV}{dzd\Omega} = r^2(z)/H(z) \)
Probing Dark Energy: the Future

• Probe dark energy through the history of the expansion rate:

\[
\frac{H^2(z)}{H^2_0} = \Omega_M(1+z)^3
+ \Omega_{DE} \exp \left[3 \int (1+w(z)) \, d \ln(1+z)\right]
+ (1 - \Omega_M - \Omega_{DE})(1+z)^2
\]

Parametrize: \( w(a) = w_0 + w_a z/(1+z) \)

• And through the growth rate of large-scale structure: \( g = \delta/a \)

\[
g'' + \left[5 + \frac{1}{2} \frac{d \ln H^2}{d \ln a}\right] g'a^{-1} + \left[3 + \frac{1}{2} \frac{d \ln H^2}{d \ln a} - \frac{3}{2} G \Omega_m(a)\right] ga^{-2} = S(a)
\]
Constraints on Time-varying Dark Energy

3-parameter model

Jarvis et al. 05

Assumes flat Universe

We’re not there yet!
Dark Energy Scenarios

Stress-Energy: \[ G_{\mu\nu} = 8\pi G \left[T_{\mu\nu}^{\text{(matter)}} + T_{\mu\nu}^{\text{(dark energy)}}\right] \]

Gravity: \[ G_{\mu\nu} + f(g_{\mu\nu}) = 8\pi G T_{\mu\nu}^{\text{(matter)}} \]  
\[ G_{\mu\nu} = f(T_{\mu\nu}^{\text{(matter)}}) \]  
Cf. Sean Carroll’s

Inhomogeneity: apparent acceleration due to LSS  
Talk

Key Experimental Questions:
1. Is \( w \) observationally distinguishable from -1?  
   What precision is needed? Depends on the answer.
2. Can we distinguish between gravity and stress-energy?  
   Combine geometric w/ structure-based probes
3. If \( w \neq -1 \), it likely evolves: how well can/must we measure \( dw/da \) to make progress in fundamental physics?
The Coincidence Problem

Why do we live at the `special’ epoch when the dark energy density is comparable to the matter energy density?

\[ \rho_{\text{matter}} \sim a^{-3} \]

\[ \rho_{\text{DE}} \sim a^{-3(1+w)} \]
Scalar Field Models & Coincidence

`Dynamics’ models
(Freezing models)

e.g., e⁻φ or φ⁻ⁿ

Runaway potentials
DE/matter ratio constant
(Tracker Solution)

Ratra & Peebles; Caldwell,
Steinhardt, et al; Albrecht et al,…

`Mass scale’ models
(Thawing models)

Pseudo-Nambu Goldstone Boson
Low mass protected by symmetry
(Cf. axion) JF, Hill, Stebbins, Waga

V(φ) = M⁴[1+cos(φ/f)]
f ~ M_{Planck} M ~ 0.001 eV ~ m_ν

Dec. 11, 2005
Second Coincidence Problem: is $w \neq -1$ natural?

If $w \neq -1$, why is the scalar field dynamics changing just around the time it begins to dominate the Universe?

\[ \rho_{\text{matter}} \sim a^{-3} \]

\[ \rho_{\text{PNGB}} \]

\[ \rho_{\text{Tracker}} \]

Today
‘Axion’ (PNGB) Dark Energy

‘The only symmetries in String Theory which might yield light scalars are axions.’ (Banks & Dine)

In axion models, coincidence problems indicate a new (effective) mass scale: e.g., 10^{-3} eV \sim \exp(-2\pi^2/g^2) \, M_{\text{SUSY}}
\quad m_a^2 \sim \exp(-8\pi^2/g^2) \, M_{\text{SUSY}}^2 / M_{\text{Pl}}^2 \sim (10^{-33} \text{eV})^2

V(\phi) = M^4[1+\cos(\phi/f)]

See also
Kim; Choi; Namura, etal,
Kaloper & Sorbo,…
There is little reason to assume that \, w = -1 \, is favored.
Distinguish **thawing** and **freezing** fields

- **bounds**
- **evolution**
- **trends**

Currently, there are no strong constraints on this phase diagram.

*cosmic jerk: j > 1*

Caldwell & Linder
Goal for ~2011: SPT+DES

Goal for ~2015+: JDEM, LSST

Scalar field models

$V \propto \Phi^n, \ n = 1, 2, 4$
short, dot-, long-dashed

$V \propto \cos^2(\Phi/2f)$
solid

$V \propto \Phi^{-n}$
solid

$V \propto \Phi^{-n} e^{\alpha \Phi^2}$
dashed

Caldwell & Linder
Probes of Dark Energy

- Supernovae
  - Hook, Riess, Kowalski
- Weak Gravitational Lensing
  - Bernstein, Sheldon
- Cluster Surveys
  - Gladders
- Baryon Oscillations
- Integrated Sachs-Wolfe
- Other
Supernovae: Where we’re headed

On-going SN surveys

Future Surveys:
PanSTARRS, DES, JDEM, LSST

Cf. Y.B.
Supernovae: the JDEM Future

- **Goal:** Determine $w_0$ to $\sim5\%$ and $w_a$ to $\sim20\%$ (with CMB).
- **Statistical Requirement:** $\sim1\%$ relative distance measurements (2% flux) in $\Delta z \sim 0.1$ redshift bins.
- Assume systematic error can be reduced to this level.
  
  *Kim, et al. 04, Kim & Miquel 05*

- Require $\sim3000$ SNe spread over $z \sim 0.3-1.7$ and a well-observed sample at low $z$ to anchor the Hubble diagram. **Consequent requirements for NIR and photometric stability lead to a space-based mission.**
Probing Dark Energy Evolution: 2% Mag Systematic Error Floors

3000 SNe

\[ \sigma_{dw/dz} \]

- SNe
- SNe + \( \sigma_{\Omega_M} = 0.03 \)
- SNe + \( \sigma_{\Omega_M} = 0.01 \)
- SNe + Planck
- SNe + Planck + \( \sigma_{\Omega_M} = 0.01 \)

\[ Z_{\text{MAX}} \]

JF, Huterer, Linder, Turner 03
Can we get there? Systematics Concerns

e.g., Luminosity Evolution:

We believe SNe Ia at \( z \sim 0.5 \) are not intrinsically \(~25\%\) fainter than nearby SNe (the basis for Dark Energy). Could SNe at \( z \sim 1.5 \) be 2\% fainter/brighter than those nearby, \textit{in a way that leaves all other observables fixed}? Key: Many observables per SN; which needed?

\textbf{Expectation}: drift in progenitor population mix (progenitor mass, age, metallicity, C/O, accretion rates, etc).

\textbf{Control}: the variety of host environments at low redshift spans a larger range of metallicity, etc, than the median differences between low- and high-z environments, so we can compare high-z apples with low-z apples, using host info., LC shape, colors, spectral features & spectral evolution, and \textit{assuming} these exhaust the parameters that control \( L_{\text{peak}} \).
Supernova Hubble Diagram

CFHT Supernova Legacy Survey

Astier et al. 05

Needed: more, better data at low and intermediate redshift

Dec. 11, 2005
Carnegie Supernova Project

Nearby Optical+NIR LCs
SDSS II Supernova Survey
Sept-Nov. 2005-7

• Obtain ~200 high-quality SNe Ia light curves in the `redshift desert’ z~0.05-0.35: continuous Hubble diagram
• Probe Dark Energy in z regime less sensitive to evolution than, and complementary to, deeper surveys
• Study SN Ia systematics with high photometric accuracy
• Search for additional parameters to reduce Ia dispersion
• Determine SN/SF rates/properties vs. z, environment
• Rest-frame u-band templates for z >1 surveys
• Database of Type II and rare SN light-curves (large survey volume with multi-band coverage)
SDSS Supernova Survey: First Season

http://sdssdp47.fnal.gov/sdsssn/snlist.php

Sept. 1 - Nov. 30, 2005:

139 confirmed SNe Ia (including 13 ‘probable’ Ia’s)

**additional** unconfirmed but likely Ia’s based on light curves

10 confirmed type II

6 confirmed Ib/c

Ia redshift range: 0.01-0.41, \langle z \rangle =0.2.

Very high Ia targeting efficiency for Ia’s using multi-band light curve fitting (similar to SNLS algorithm).
SN 2005 ff

Composite gri images

Before

After

$z = 0.07$, confirmed at WHT

Preliminary gri light curve and fit from low-$z$ templates

Dec. 11, 2005
SN 2005 gb

Composite gri images

Before

After

$z = 0.086$, confirmed at ARC 3.5m

Preliminary gri light curve and fit from low-z templates

Dec. 11, 2005
Follow-up Spectra from Subaru
Conclusions

• Excellent prospects for increasing the precision on Dark Energy parameters from a sequence of increasingly complex, ambitious, and costly experiments over the next 5-15 years

DES+SPT, PanSTARRS, LSST, WFMOS, JDEM, Planck,…

• Exploiting complementarity of multiple probes (supernovae, clusters, weak lensing, baryon oscillations,…) will be key, especially given uncertainties in what the ultimate systematic error floors for each method will be.

• Encouraging progress in understanding and controlling systematic errors.

• What parameter precision is needed to stimulate theoretical progress? It depends in large part on what the answer is.