Binary models for short GRBs

Richard O'Shaughnessy V. Kalogera, K. Belczynski Northwestern University 2005-12-11

Goals of talk

• Why a merger model?

[=Lamb's plenary talk Friday]

- Does a merger model work?
 - Do we make enough mergers?
 - Are the right galaxies hosts?
 - Do the binaries last long enough to escape?
 [=Chris Belczynski's talk today]
 - Are the redshifts consistent with expectations?

Earlier work

- For long GRBs:
 - Bromm and Loeb (2002), ...
- For short GRBs:
 - Voss and Tauris (2003); Bloom et al (2003)
 - Ando (2004), Guetta and Piran (2005)

Nakar, Gal-Yan, Fox (2005), ...

Outline

- Population synthesis for the universe
 - Star formation history
 - Heterogeneity: Ellipticals and spirals
 - NS-NS and BH-NS population synthesis
 - Mass efficiencies
 - Merger times
- Implications for mergers and GRBs
 - Long-lived progenitors
 - Merger rates
 - Relative frequency in ellipticals/spirals
 - Redshift distribution

[intractable w/o luminosity function]

Star formation history

Peaks near z~1

Porciani and Madau's SFR 1 [cf. Heavens; XXX]

Heterogeneity

Idealized model:

	Fraction	Z	IMF
Spirals	80%	Z _O = 0.02	Kroupa
Ellipticals	20%	0.5-2x Z _o	~Salpeter

BH-NS (elliptical conditions)
 Mass efficiency

$$\lambda_{e,BH-NS} \sim 1.3 \times 10^{-2} / M_{O}$$

• BH-NS (spiral conditions) Mass efficiency

$$\lambda_{s,BH-NS} \sim 3.7 \times 10^{-4}/M_{\odot}$$

NS-NS (elliptical conditions)
 Mass efficiency

$$\lambda_{e,NS-NS} \sim 1.5 \times 10^{-2}/M_{\odot}$$

NS-NS (spiral conditions)
 Mass efficiency

$$\lambda_{s, NS-NS}$$
 ~ 10⁻³/M_O

Merger time distribution

- Key points:
 - Elliptical conditions =

flatter IMF =

higher mass efficiency (10x - 50 x)

- Many progenitors long-lived
 Fraction of merging systems with t_{mar}>100 Myr
 - dominates

Fairly independent of popsyn assumptions

....except NS-NS (under spiral conditions)

Implications: Long-lived progenitors?

• Many long-lived progenitors

1-P(0.1 Gyr)/P(10 Gyr)

		elliptical	spiral
r)	NS-NS	75%	43%
	BH-NS	89%	75%

- Useful for explaining...
 - Distance from host galaxy
 - Presence in host galaxy with old stellar population

Merger & intrinsic GRB rates at present?

- Model 0: Reference model (estimate)
 - Method
 - ~ 35% merge
 - Sprials only:
 - density n_s=0.01/Mpc⁻³
 - SFR : $dM/dt/galaxy = 3.5 M_O/yr$
 - <u>Result</u>:
 - ~ confirmed by more detailed calculations [O'Shaughnessy et al ApJ 633 1076]

Method 0

Mpc⁻⁻³ yr⁻⁻¹

NS-NS	4x 10 ⁻⁷ 4x 10 ⁻⁴
BH-NS	4x 10 ⁻⁷ 4x 10 ⁻⁴

- Problems:

- Spirals only ("blue light" normalization)
- Ignores time dependent SFR & merger delays

Merger & intrinsic GRB rates at present?

- Model 1: Use SFR of universe
 - Method
 - Fix elliptical:spiral ratio
 - Convolve each with SFR

Method 1 Method 0

Mpc⁻⁻³ yr⁻⁻¹

Mpc⁻⁻³ yr⁻⁻¹

 <u>Result</u>: slightly higher 	NS-NS	10 ^{-5.5} -10 ^{-2.5}	10 ^{-6.5} -10 ^{-3.5}
Ducklauser	BH-NS	10 ⁻⁶ -10 ⁻³	10 ^{-6.5} -10 ^{-3.5}

- Problems:
 - Dominated by recent 'elliptical' star formation
 - Needs continuous elliptical SF at present

Implications: Merger & intrinsic GRB rates at present?

- Model 1: Use SFR of universe
 - Elliptical, spiral merger rate history: (BH-NS)

Merger & intrinsic GRB rates at present?

- **Model 2**: Ellipticals only form *early*
 - Method
 - Ellipticals for z>1, spirals for z<1
 - Convolve each with SFR

- <u>Result</u>:

FR	Method 2	Iviethod U	
	Mpc ³ yr ¹	Mpc ³ yr ¹	
NS-NS	10 ^{-6.5} -10 ^{-3.5}	10 ^{-6.5} -10 ^{-3.5}	
BH-NS	10 ^{-6.5} -10 ^{-3.5}	10 ^{-6.5} -10 ^{-3.5}	

...ends up same as by naïve approach

Implications: Merger & intrinsic GRB rates at present?

- Model 2: Use SFR of universe
 - <u>Elliptical, spiral merger rate history</u>: (BH-NS)

Implications: Relative frequency of hosts?

- Competing factors
 - Ellipticals form more massive stars
 - Spirals form stars now; + more spirals

R _{spiral} /R _{elliptical}	Estimate $\frac{\lambda_{sp} f_{sp}}{\lambda_{sp} f_{sp}}$	Calculation (Method 2)
NS-NS	0.2	0.05
BH-NS	0.1	0.1

GRB detection rate and Redshift distribution?

- Tricky!
 - Need good detection model
 - (i.e. luminosity function)
 - Received flux depends on
 - Viewing geometry (beaming)
 - BH spin (BH-NS cases)

 \rightarrow no a priori method

 \rightarrow not enough data from experiment

[cf. Nakar et al <u>astro-ph/0511254</u>, <u>Ando (2004)</u>, <u>Guetta and</u> <u>Piran (2005)</u>]

Summary

- Bias towards early-type galaxies can be explained
 - Higher mass efficiency via IMF
 - Long progenitor lifetimes permissible
- Predictive? Not yet...
 - IMFs and elliptical:spiral ratio critical!
 - LF needed!
- Questions:
 - Where are non-escaping mergers?
 - Stellar interactions?