Binary models for short GRBs

Richard O’Shaughnessy
V. Kalogera, K. Belczynski
Northwestern University
2005-12-11
Goals of talk

• Why a merger model?
 [=Lamb’s plenary talk Friday]

• Does a merger model work?
 – Do we make enough mergers?
 – Are the right galaxies hosts?
 – Do the binaries last long enough to escape?
 [=Chris Belczynski’s talk today]
 – Are the redshifts consistent with expectations?
Earlier work

• For long GRBs:
 – Bromm and Loeb (2002), …

• For short GRBs:
 – Ando (2004), Guetta and Piran (2005)
 Nakar, Gal-Yan, Fox (2005), …
Outline

• Population synthesis for the universe
 – Star formation history
 – Heterogeneity: Ellipticals and spirals
 – NS-NS and BH-NS population synthesis
 • Mass efficiencies
 • Merger times

• Implications for mergers and GRBs
 – Long-lived progenitors
 – Merger rates
 – Relative frequency in ellipticals/spirals
 – Redshift distribution
 [intractable w/o luminosity function]
Star formation history

- Peaks near $z \sim 1$

Porciani and Madau’s SFR 1
[cf. Heavens; XXX]
Heterogeneity

- **Idealized model:**

<table>
<thead>
<tr>
<th></th>
<th>Fraction</th>
<th>(Z)</th>
<th>IMF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spirals</td>
<td>80%</td>
<td>(Z_\odot = 0.02)</td>
<td>Kroupa</td>
</tr>
<tr>
<td>Ellipticals</td>
<td>20%</td>
<td>0.5-2x (Z_\odot)</td>
<td>(~\text{Salpeter})</td>
</tr>
</tbody>
</table>
Population synthesis

- BH-NS (elliptical conditions)

Mass efficiency

$$\lambda_{e, \text{BH-NS}} \sim 1.3 \times 10^{-2}/M_\odot$$

Merger time distribution

[Graphs showing distribution of merger times]
Population synthesis

- BH-NS (spiral conditions)

Mass efficiency

\[\lambda_{s,\text{BH-NS}} \sim 3.7 \times 10^{-4}/M_{\odot} \]

Merger time distribution

\[\log(\lambda) \]

\[\log(t/\text{Myr}) \]
Population synthesis

- NS-NS (elliptical conditions)

Mass efficiency

\[\lambda_{e,\text{NS-NS}} \sim 1.5 \times 10^{-2}/M_\odot \]

Merger time distribution
Population synthesis

- NS-NS (spiral conditions)

Mass efficiency

\[\lambda_{s, \text{NS-NS}} \sim 10^{-3}/M_\odot \]
• Key points:
 – Elliptical conditions =
 flatter IMF =
 higher mass efficiency (10x - 50 x)
 – Many progenitors **long-lived**
 Fraction of merging systems with $t_{mgr} > 100$ Myr
 dominates
 Fairly independent of popsyn assumptions
 ….except **NS-NS** (under spiral conditions)
Implications: Long-lived progenitors?

- **Many** long-lived progenitors

\[
1 - P(0.1 \text{ Gyr})/P(10 \text{ Gyr})
\]

<table>
<thead>
<tr>
<th></th>
<th>elliptical</th>
<th>spiral</th>
</tr>
</thead>
<tbody>
<tr>
<td>NS-NS</td>
<td>75%</td>
<td>43%</td>
</tr>
<tr>
<td>BH-NS</td>
<td>89%</td>
<td>75%</td>
</tr>
</tbody>
</table>

- **Useful** for explaining…
 - Distance from host galaxy
 - Presence in host galaxy with old stellar population
Implications:
Merger & intrinsic GRB rates at present?

• **Model 0**: Reference model (estimate)

 – **Method**

 • ~ 35% merge
 • Spirals only:

 – density $n_s=0.01$/Mpc$^{-3}$
 – SFR: dM/dt/galaxy = 3.5 M_\odot/yr

 – **Result:**

 ~ confirmed by more detailed calculations

 – **Problems:**

 • Spirals only (“blue light” normalization)
 • Ignores time dependent SFR & merger delays

<table>
<thead>
<tr>
<th>Method 0</th>
<th>NS-NS</th>
<th>BH-NS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>4×10^{-7} -- 4×10^{-4}</td>
<td>4×10^{-7} -- 4×10^{-4}</td>
</tr>
</tbody>
</table>

Implications:
Merger & intrinsic GRB rates at present?

- **Model 1**: Use SFR of universe
 - **Method**
 - Fix elliptical:spiral ratio
 - Convolve each with SFR
 - **Result**: ...slightly higher
 - **Problems**:
 - Dominated by recent ‘elliptical’ star formation
 - Needs continuous elliptical SF at present

<table>
<thead>
<tr>
<th></th>
<th>Method 1</th>
<th>Method 0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mpc$^{-3}$ yr$^{-1}$</td>
<td>Mpc$^{-3}$ yr$^{-1}$</td>
</tr>
<tr>
<td>NS-NS</td>
<td>10$^{-5.5}$-10$^{-2.5}$</td>
<td>10$^{-6.5}$-10$^{-3.5}$</td>
</tr>
<tr>
<td>BH-NS</td>
<td>10$^{-6}$-10$^{-3}$</td>
<td>10$^{-6.5}$-10$^{-3.5}$</td>
</tr>
</tbody>
</table>
Implications: Merger & intrinsic GRB rates at present?

- **Model 1**: Use SFR of universe
 - Elliptical, spiral merger rate history: (BH-NS)
Implications:
Merger & intrinsic GRB rates at present?

- **Model 2**: Ellipticals only form *early*

 - **Method**
 - Ellipticals for $z>1$, spirals for $z<1$
 - Convolve each with SFR

 - **Result**:

### Method 2	Method 0
NS-NS | $10^{-6.5} - 10^{-3.5}$ | $10^{-6.5} - 10^{-3.5}$
BH-NS | $10^{-6.5} - 10^{-3.5}$ | $10^{-6.5} - 10^{-3.5}$

...ends up same as by naïve approach
Implications: Merger & intrinsic GRB rates at present?

• **Model 2**: Use SFR of universe
 - Elliptical, spiral merger rate history: (BH-NS)

![Graphs showing transition at z=1 and z=2](image)
Implications: Relative frequency of hosts?

- Competing factors
 - Ellipticals form more massive stars
 - Spirals form stars now; + more spirals

<table>
<thead>
<tr>
<th>$R_{\text{sp}}/R_{\text{ell}}$</th>
<th>Estimate</th>
<th>$\frac{\lambda_{sp}f_{sp}}{\lambda_{el}f_{el}}$</th>
<th>Calculation (Method 2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NS-NS</td>
<td>0.2</td>
<td></td>
<td>0.05</td>
</tr>
<tr>
<td>BH-NS</td>
<td>0.1</td>
<td></td>
<td>0.1</td>
</tr>
</tbody>
</table>
Implications:
GRB detection rate and Redshift distribution?

• Tricky!
 – Need good detection model
 (i.e. luminosity function)

 – Received flux depends on
 • Viewing geometry (beaming)
 • BH spin (BH-NS cases)
 → **no** a priori method
 → not enough data from experiment

Summary

• Bias towards early-type galaxies can be explained
 – Higher mass efficiency via IMF
 – Long progenitor lifetimes permissible
• Predictive? Not yet…
 – IMFs and elliptical:spiral ratio critical!
 – LF needed!
• Questions:
 – Where are non-escaping mergers?
 – Stellar interactions?