Probing the Dark Matter Particle Spectrum with the Dark Matter Power Spectrum

Kris Sigurdson
Institute for Advanced Study

KICP: New Views of the Universe
December 11, 2005

Work in collaboration with Stefano Profumo, Piero Ullio and Marc Kamionkowski
What do we know?

Compelling cosmological evidence that nonbaryonic (non Standard Model) dark matter exists.
Weakly Interacting Dark Matter

- $\Omega_d h^2 = 0.113$

- Lightest Dark Particle (LDP) stable over cosmological timescales.

- Thermally produced dark matter should have Fermi-scale annihilation cross section. If interacts with SM must be “Weakly Interacting”.
Dark-Sector Couplings to Standard Model Particles

This Talk:

- **The point**: While we know something about the properties of the LDP the interactions of other (unstable) particles of the dark sector are unknown. Can we hope learn something about them?

- **Example**: a charged Next-Lightest Dark Particle (NLDP) and its impact on the matter power spectrum
A Charged NLDP

- **Modified Density Perturbations**: GR Perturbation Theory about a smooth FRW Universe

- **NLDP Decays**: $\phi^\pm \rightarrow \chi \pm ...$

- Can modify evolution of density perturbations in early Universe.

\[\dot{\delta}_\chi = -\theta_\chi - \frac{1}{2} \dot{h} + \lambda_m \frac{\rho_\phi a}{\rho_\chi^2 T} (\delta_\beta - \delta_\chi) \]

- **Continuity Equation**
- **Gravity**
- **Decay**
Effect of Charged NLDP?

- **Before Decay**: The NDLP couples to the photon-baryon fluid! NLDP perturbation modes that enter the horizon **oscillate** rather than grow. These modes source the LDP modes and thus **suppress growth** of dark-matter perturbations.

- **After Decay**: Dark-Matter modes that enter the horizon **grow** under the influence of gravity, as in the standard case.
Effect of Charged NLDP?

$k = \begin{array}{ccc}
30 \text{ Mpc}^{-1} & 3 \text{ Mpc}^{-1} & 0.3 \text{ Mpc}^{-1} \\
\text{Dark Matter (Standard Case)} & \text{Dark Matter (w/Charged NLDP)} & \text{Charged Matter (Baryons+NLDP)}
\end{array}$

$\tau = 3.5 \text{ yr}$
$f_\phi = 1$

KS and Marc Kamionkowski
$f_{\phi} < 1$

$\Delta^2(k) = \frac{k^3 P(k)}{2\pi^2}$

Suppression by a factor $(1 - f_{\phi})^2$ in the linear power spectrum.
Particle Theory Models? $f_\phi = 1$

- Long lifetime? Very Weak coupling?
 - **SuperWIMPS**

 J. Feng et al. (2003) (See talk by F. Takayama on Monday!)

- **Gravitational Decay** can get lead to cosmologically interesting lifetimes.

- May solve the small-scale structure problem with charged-decay for lifetimes of order years.

 Or if substructure is found constrain these models!
Particle Theory Models? $f_\phi < 1$

- Supersymmetric Dark Matter Models with the LDP=neutralino and NLDP=stau. $\tilde{\tau} \rightarrow \chi + \ldots$

- The stau coannihilation region ($m_{\chi_1^0} \approx m_{\tilde{\tau}_1}$) of the MSSM can give the observed WMAP relic abundance.

- If $\Delta m < m_{\tau}$ The stau is long-lived because it decays via 4-body processes

$$\tau^{(4)} \propto (\Delta m)^{-8}$$

Stefano Profumo, KS, Piero Ullio and Marc Kamionkowski

Particle Theory Models? $f_\phi < 1$

Only the stau can play the role of a quasistable charged particle (with cosmologically interesting lifetimes) in the MSSM.
Other Signatures

- Production of neutralinos at the LHC if they are Bino-like.
- Production and trapping of long-lived staus at the LHC of ILC.
- Direct Detection of neutralinos possible.
- Indirect detection is unlikely.
- Might observe these effects with the high-redshift Cosmic 21-cm Power Spectrum
Summary

- The properties of dark-sector particles are not known.
- Example: A charged NLDP could have interesting effects on the matter power spectrum.
- Stau is a good candidate in the MSSM.
- Direct Detection. LHC/ILC.
- 21-cm fluctuations.