Future Prospects for the Integrated Sachs-Wolfe Effect: The Optimistic Case

Ryan Scranton

10 December 2005

Hu & Scranton, PRD, 70, 12

ISW in 1 Minute

- After matter-radiation equality, dark matter falls into potential wells set up during inflation. For ACDM, universe expands faster than potentials grow
- CMB photons passing through potentials see net blue-shift in energy ⇒ Integrated Sachs-Wolfe Effect
- Increases CMB autocorrelation at small *l* and induces positive correlation with galaxies

Wayne Hu, Samuel Laroque

ISW in 1 Minute

- Cross-correlations detected with optical galaxies (RS et al., Fosalba et al.), radio galaxies (Nolta et al., Boughn & Crittenden) and IR galaxies (Afshordi et al.).
- The detection significance in each case is 2-3σ and there are some unexpected secondary results (Padmanabhan et al.), but the general signal seems to be real.

Going Beyond Mere Detection

- Classic picture of dark energy:
 - **\star** Cosmological Constant (Λ)
 - $\star p/\rho \equiv w = -1$
 - $\star \ \delta p/\delta\rho \equiv c_e^2 = 1$
- For $w \neq -1$, we have two regimes:
 - ★ $c_e \ge 1$: Smooth Dark Energy, clustering only on scales larger than the horizon size, **Quintessence**
 - ★ $c_e < 1$: Clustered Dark Energy, $k \sim 1/c_e \Rightarrow$ lower sound speed dark energy enters the horizon at smaller scales, **k-essence**

CMB Only

- Choose w = -0.8, modify h and Ω_{DE} to keep distance to recombination and high-z expansion consistent with WMAP results.
- ISW only dominates at small *l*.
- Cosmic variance makes differences in ISW signature very hard to distinguish.

ISW Cross-correlation

- Consider full-sky, deep, photometric galaxy survey (LSST++). Select 10 photometric redshift bins based on expected photo-z errors.
- Calculate expected cross-correlation with background CMB for each redshift slice
- Check variations of the ISW signal with respect to w and c_e

ISW Cross-correlation

- Consider full-sky, deep, photometric galaxy survey (LSST++). Select 10 photometric redshift bins based on expected photo-z errors.
- Calculate expected cross-correlation with background CMB for each redshift slice
- Check variations of the ISW signal with respect to w and c_e

ISW Cross-correlation

- Consider full-sky, deep, photometric galaxy survey (LSST++). Select 10 photometric redshift bins based on expected photo-z errors.
- Calculate expected cross-correlation with background CMB for each redshift slice
- Check variations of the ISW signal with respect to w and c_e

Our Results

- Expect S/N of about 10 for best case ISW signal. As w → 0, having high redshift information becomes critical. ISW-only constrains |1 + w| to 5%.
- Distinguishing between c_e ~ 0.1 and c_e = 1 can be done at the 2.5σ level (DE smoothness at 1 Gpc to 3%). Demands high redshift information and most sensitive at l < 10.
- Current best shot at quintessence vs. k-essence.

Our Results

- Expect S/N of about 10 for best case ISW signal. As w → 0, having high redshift information becomes critical. ISW-only constrains |1 + w| to 5%.
- Distinguishing between c_e ~ 0.1 and c_e = 1 can be done at the 2.5σ level (DE smoothness at 1 Gpc to 3%). Demands high redshift information and most sensitive at l < 10.
- Current best shot at quintessence vs. k-essence.

Our Results

- Expect S/N of about 10 for best case ISW signal. As w → 0, having high redshift information becomes critical. ISW-only constrains |1 + w| to 5%.
- Distinguishing between c_e ~ 0.1 and c_e = 1 can be done at the 2.5σ level (DE smoothness at 1 Gpc to 3%). Demands high redshift information and most sensitive at l < 10.
- Current best shot at quintessence vs. k-essence.

Summary

- Current ensemble of ISW measurements shows reasonably convincing evidence of detection.
- Moving beyond detection to constraints requires careful modelling and treatment of systematic effects as well as more area and volume.
- Best case ISW can constrain |1 + w| to 5%.
- Eventually, ISW + lensing + auto-correlations can (possibly) constrain the clustering scale for dark energy or at least constrain the smoothness of dark energy for scales < 5 Gpc.
- Life would be simpler if dark energy were less like itself.