# Searching in the Light for Dark Energy Time Variation

Jason Dick University of California, Davis

### Motivation

- Is dark energy a cosmological constant?
- Theory gives little insight as to how dark energy varies.
- Theory-independent analysis: let the data decide.
- Our solution: use eigenmodes.

### Data

- Supernova data: Riess et. al. (astroph/0402512) and Astier et. al. (astroph/0510447)
- WMAP constraints: Provided by Mike Chu (taken from his work in astro-ph/0411737)
- BAO constraints: Eisenstein et. al. (astroph/0501171)

### Parameterization

- Define:  $\rho_x(z) = \rho_c a_i e_i(z)$ .
- Choose basis: e<sub>0</sub> is constant, others vary



- •Constant basis vector (i=0)
- •One varying vector
- •Another varying vector

# Diagonalization

- To describe our cosmology, we now have the parameters:  $\omega_m$ ,  $\Omega_k$ ,  $a_0$ ,  $a_1$ - $a_n$ , and the supernova parameters: M,  $\alpha$ ,  $\beta$ .
- Take Gaussian approximation to marginalize over all but a₁-a<sub>n</sub>.
- Diagonalize to get eigenvectors (a new basis):

# Some example eigenmodes

SNLS + BAO + WMAP data



# MCMC Analysis

- Frees us from the Gaussian approximation.
- Using MCMC, estimate values and errors of best-measured modes only.
- The errors in each varying mode should be uncorrelated with all other varying modes.









#### More Results



- •One DE Param
- Two DE Params
- Three DE Params
- Four DE Params

## When Gaussians Go Bad

- Adding more modes: degeneracies appear.
- Here it happens when the MCMC chain includes the 7<sup>th</sup> dark energy parameter.
- This degeneracy is between a<sub>0</sub> and a<sub>6</sub>.

SNLS + BAO + WMAP



#### Conclusions

- Good method for detecting deviation from constant without being tied to a particular theory.
- Not tied to the Gaussian approximation.
- As expected, current data is consistent with a cosmological constant and zero curvature.

Questions?









